Графика
Курсовые
Алгебра
Физика
Типовой
Инженерная
Математика
Лекции

Бетатрон

ТОЭ
Задачи
Решения

Реактор

Архитектура
Контрольная
Чертежи

Интегрирование рациональных дробей

  Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

 Теорема: Если  - правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P(x) = (x - a)a…(x - b)b(x2 + px + q)l…(x2 + rx + s)m ), то эта дробь может быть разложена на элементарные по следующей схеме:

 

где Ai, Bi, Mi, Ni, Ri, Si – некоторые постоянные величины.

 При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

  Применение этого метода рассмотрим на конкретном примере.

Преобразовать в дробь степень

 Пример.

Т.к.  (, то

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:

 

 

 

 

 

 

  


Математика