Теоретическая механика Основные понятия и аксиомы статики Кинематические пары и цепи Сопротивление материалов Механические испытания материалов Основные требования к машинам и деталям Сварные соединения


Теоретическая механика лекции и задачи

Основные понятия и аксиомы статики

Плоская система сходящихся сил Геометрический метод сложения сил, приложенных в одной точке Силы называют сходящимися, если их линии действия пересекаются в одной точке. Различают плоскую систему сходящихся сил, когда линии действия всех данных сил лежат в одной плоскости, и пространственную систему сходящихся сил, когда линии действия сил лежат в разных плоскостях. Механика(в широком смысле) - это наука о движении материальных тел в пространстве и времени. Она объединяет ряд дисциплин, объектами исследования которых являются твердые, жидкие и газообразные тела. Теоретическая механика, Теория упругости, Сопротивление материалов, Гидромеханика, Газовая динамика и Аэродинамика - вот далеко не полный перечень различных разделов механики. Как видно из их названий, они отличаются друг от друга прежде всего объектами исследования.

В механике изучают законы взаимодействия и движения материальных тел. Механическим движением называют происходящее с течением времени изменение положения тел или точек в пространстве. Статика основана на аксиомах, вытекающих из опыта и принимаемых без доказательств.

Третья аксиома служит основой для преобразования сил. Не нарушая механического состояния абсолютно твердого тела, к нему можно приложить или отбросить от него уравновешенную систему сил.

Пятая аксиома устанавливает, что в природе не может быть одностороннего действия силы. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие.

Проекция силы на ось Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями.

Проекция векторной суммы на ось

Уравнения равновесия плоской системы сходящихся сил Сходящаяся система сил находится в равновесии в случае замкнутости силового многоугольника. Равнодействующая при этом равна нулю (). Проекции равнодействующей системы сходящихся сил на координатные оси равны суммам проекций составляющих сил на те же оси

Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще, всего.

Пара сил и ее действие на тело Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике.

Упражнение

Эквивалентность пар

Момент сил относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы

Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в одной плоскости, и моменты этих пар имеют следующие значения: М1 = —600 Нм; М2 = 320 Нм и М3 = 280 Нм

Центр параллельных сил и его координаты Установим одно важное свойство точки приложения равнодействующей двух параллельных сил

Применим теорему о моменте равнодействующей (теорему Вариньона) относительно начала координат (точки О)

Центр тяжести шара совпадает с его геометрическим центром

Сумма статических моментов всех частей фигуры называется статическим моментом площади фигуры относительно данной оси

Вычислите значение равнодействующей  и абсциссу хC центра параллельных сил

Элементы кинематики

В кинематике изучается механическое движение материальных точек и твердых тел без учета причин, вызывающих эти движения. Кинематику часто называют геометрией движения. Механическое движение происходит в пространстве и во времени. Пространство, в котором происходит движение тел, рассматривается как трехмерное, все свойства его подчиняются системе аксиом и теорем эвклидовой геометрии. Время полагают ни с чем не связанным и протекающим равномерно.

В кинематике изучается механическое движение материальных точек и твердых тел без учета причин, вызывающих эти движения. Кинематику часто называют геометрией движения. Механическое движение происходит в пространстве и во времени. Пространство, в котором происходит движение тел, рассматривается как трехмерное, все свойства его подчиняются системе аксиом и теорем эвклидовой геометрии. Время полагают ни с чем не связанным и протекающим равномерно.

В механике изучают законы взаимодействия и движения материальных тел. Механическим движением называют происходящее с течением времени изменение положения тел или точек в пространстве.

Частным случаем движения является состояние покоя. Покой всегда имеет относительный характер, так как покоящееся тело рассматривается как неподвижное по отношению к некоторому другому телу, которое, в свою очередь, может перемещаться в пространстве. Абсолютно неподвижных тел в природе нет. Например, мы говорим, что станина машины или фундамент сооружения находится в покое. Они действительно неподвижны относительно Земли, но вместе с ней совершают сложное движение вокруг Солнца.

Тело можно рассматривать как материальную точку, т. е. его можно представить геометрической точкой, в которой сосредоточена вся масса тела, в том случае, когда размеры тела не имеют значения в рассматриваемой задаче. Например, при изучении движения планет и спутников их считают материальными точками, так как размеры планет и спутников пренебрежимо малы по сравнению с размерами их орбит. С другой стороны, изучая движение планеты (например, Земли) вокруг оси, ее уже нельзя считать материальной точкой. Тело можно считать материальной точкой во всех случаях, когда все его точки совершают тождественные движения.

Рассматривая равновесие тел, их считают абсолютно твердыми (или абсолютно жесткими), т. е. предполагают, что никакие внешние воздействия не вызывают изменения их размеров и формы и что расстояние между любыми двумя точками тела всегда остается неизменным. В действительности все тела под влиянием силовых воздействий со стороны других тел деформируются и изменяют свои размеры или форму. Но материалы, форму и размеры элементов конструкций подбирают с таким расчетом, чтобы их деформации были минимальными, поэтому такими деформациями пренебрегают и рассматривают элементы конструкций как абсолютно твердые тела

Системой называется совокупность материальных точек, движения и положения которых взаимозависимы. Из приведенного определения следует, что любое физическое тело можно рассматривать как систему материальных точек.

Абсолютно твердые тела могут вступать во взаимодействие, в результате которого изменяется характер их движения. Сила является мерой этого взаимодействия. Действие силы на тело определяется тремя факторами: численным значением, направлением и точкой приложения, т. е. сила является векторной величиной.

Вектор силы изображается отрезком, на конце которого ставится стрелка. Стрелка указывает направление вектора, длина отрезка — значение вектора, измеренное в выбранном масштабе. Вектор в тексте обозначают одной буквой со стрелкой наверху , а на схемах (рис.1, а, б) стрелки не ставятся, так как само обозначение вектора в виде направленного отрезка достаточно наглядно характеризует его свойства. Модуль или численное значение силы в СИ измеряется в ньютонах (Н). Применяют также и более крупные единицы измерения: 1 килоньютон (1 кН = 103 Н), 1 меганьютон (1 МН = 106 Н). До сих пор иногда используют для измерения сил техническую систему (МКГСС), в которой в качестве единицы силы применяется килограмм-сила (кГс). Единицы силы в системах СИ и МКГСС связаны соотношением 1 кГс = 9,81 Н  10 Н или 1 Н   0,1 кГс.

Пример

Пусть движение точки задано уравнениями: 

  x = t2, y = t, 

где t измеряется в секундах, x и y в метрах. Определить уравнение траектории.

Исключая из уравнений движения t, получим уравнение траектории

 t = y, x = y2.

Поскольку время t >0, координата y в исходных уравнениях движения не может быть отрицательной. Следовательно, траекторией движения будет лишь верхняя ветвь параболы x = y2 .

Рис. 2.2. Вид траектории точки в примере 1


[an error occurred while processing this directive]