Теоретическая механика Основные требования к выполнению чертежей Нанесение размеров на чертежах деталей Требования к сборочным чертежам Построение третьего вида предмета по двум данным Выполнение разрезов на чертеже


Теоретическая механика лекции и задачи

Кинематические пары и цепи

Уравнение движения точки В общем случае точка может двигаться по криволинейной траектории. Для изучения криволинейного движения точки необходимо уметь определить ее положение в назначенной системе отсчета (системе координат) в любой момент времени

Скорость точки Рассмотрим некоторые основные определения, важные для последующего изложения. Если точка за равные промежутки времени проходит равные отрезки пути, то ее движение называется равномерным.

Ускорение точки При движении по криволинейной траектории скорость точки может изменяться и по направлению, и по величине. Изменение скорости в единицу времени определяется ускорением.

Виды движения точки в зависимости от ускорения Рассмотрим возможные случаи движения точки и проанализируем выведенные выше формулы для касательного и нормального ускорений.

Изменение угловой скорости в единицу времени определяется угловым ускорением, равным производной угловой скорости по времени

Скорости и ускорения точек вращающегося тела Если тело вращается вокруг оси, то его точки перемещаются по окружностям, радиусы которых r равны расстояниям точек от оси вращения

Высшие кинематические пары

Предел применимости формулы Эйлера. Эмпирические формулы для критических напряжений

Пример. Твердое тело, вращающееся вокруг неподвижной оси, имеет в данный момент угловую скорость ω = 5 рад/с и угловое ускорение ε = - 20 рад/с2.

Основы динамики В динамике рассматривается движение материальных точек или тел под действием приложенных сил; устанавливается связь между приложенными силами и вызываемым ими движением. Динамика основывается на ряде вытекающих из опыта аксиом; некоторые из них были рассмотрены в статике.

Масса пропорциональна силе тяжести тела и представляет собой постояную скалярную величину, которая всегда положительна и не зависит от характера движения.

Работа постоянной силы на прямолинейном перемещении Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории.

Мощность Мощностью называется работа, совершаемая силой в единицу времени

Работа и мощность при вращательном движении Часто встречаются детали машин, вращающиеся вокруг неподвижных осей. Причиной вращательного движения является приложенный к телу вращающий момент относительно оси, который создается парой сил или силой F

Понятие о трении Трение в машинах играет существенную роль. В передаточных механизмах — фрикционных, канатных, ременных и др. — передача движения от ведущего звена к ведомому осуществляется трением. В других случаях трение препятствует движению, поглощая значительную часть работы движущих сил.

Сила трения качения Сопротивление трения качения возникает при перекатывании криволинейных поверхностей контактирующихся тел.

Потенциальная и кинетическая энергия Существуют две основные формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится иметь дело с потенциальной энергией сил тяжести. Потенциальной энергией силы тяжести материальной точки или тела в механике называется способность этого тела или точки совершать работу при опускании с некоторой высоты до уровня моря (до какого-то уровня). Потенциальная энергия численно равна работе силы тяжести, произведенной при перемещении с нулевого уровня до заданного положения.

Кинематической парой называется подвижное соединение двух соприкасающихся тел, например поршень и цилиндр, вал и подшипник и др. Тела, составляющие кинематическую пару, называются звеньями. Звено механизма может состоять из нескольких деталей (отдельно изготовляемых частей механизма), не имеющих между собой относительного движения.

По характеру соприкосновения элементов кинематические пары делятся на два основных класса: низшие и высшие. У низших кинематических пар соприкосновение звеньев происходит по поверхностям, а у высших — по линиям или точкам.

Низшие кинематические пары:

1) поступательные (рис. а, б):

а — цилиндр 1 и поршень со штоком 2; б — ползун 1 и прямолинейные направляющие 2;

2) вращательные (рис. в, г, д):

в — плоский шарнир; г — вал и подшипник; д — шаровой шарнир;

Моменты инерции. Движение механической системы зависит не только от действующих на нее сил и ее суммарной массы, но и от того, как эта масса распределена в пространстве. Пространственное распределение массы механической системы характеризуется моментами инерции. Различают следующие моменты инерции:

осевые - Jx , Jy , Jz , полярный - JO , центробежные - Jxy , Jyz , Jzx .

По определению осевые моменты равны:

,

  , (3.10) 

 

 Полярный момент инерции равен

 . (3.11)

 

 Рис. 3.3. К определению моментов инерции

Явление резонанса возникает при совпадаении частот вынужденных и свободных кол-ний точки  p=k. Диф-ное ур-ние: . Частное решение:

х**= Вtcos(kt+d), B=–h/(2k), т.е. общее решение диф-ного ур-ния: х = C1coskt + C2sinkt – –h/(2k)tcos(kt+d). Ур-ние показывает, что амплитуда вынужденных колебаний при резонансе возрастает пропорционально времени. Период

Т=2p/k, фаза вынужденных колебаний отстает от фазы возмущающей силы на p/2


Выполнение сечений на чертеже