Теоретическая механика Основные понятия и аксиомы статики Кинематические пары и цепи Сопротивление материалов Механические испытания материалов Основные требования к машинам и деталям Сварные соединения


Теоретическая механика лекции и задачи

Пара сил и ее действие на тело

Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике. Именно поэтому свойства пары как специфической меры механического взаимодействия тел изучаются отдельно.

Сумма проекций сил пары на ось х и на ось у равна нулю (рис. 19, а), поэтому пара сил не имеет равнодействующей. Несмотря на это тело под действием пары сил не находится в равновесии.

Действие пары сил на твердое тело состоит в том, что она стремится вращать это тело. Способность пары сил производить вращение определяется моментом пары, равным произведению силы на кратчайшее расстояние (взятое по перпендикуляру к силам) между линиями действия сил. Обозначим момент пары М, а кратчайшее расстояние между силами а, тогда абсолютное значение момента (рис. 19, а):

Кратчайшее расстояние между линиями действия сил называется плечом пары, поэтому можно сказать, что момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

Эффект действия пары сил полностью определяется ее моментом. Поэтому момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения. Так как

пара сил не имеет равнодействующей, ее нельзя уравновесить одной силой. Момент пары в СИ измеряется в ньютонометрах (Нм) или в единицах, кратных ньютонометру: кНм, МНм и т. д.

Момент пары сил будем считать положительным, если пара стремится повернуть тело по направлению хода часовой стрелки (рис. 19, а), и отрицательным, если пара стремится вращать тело против хода часовой стрелки (рис. 19, б). Принятое правило знаков для моментов пар условно: можно было бы принять противоположное правило.

Координатный способ задания движения точки.

С векторным способом тесно связан координатный способ задания движения точки. Очевидно, что положение движущейся точки в пространстве будет однозначно определено, если будут известны текущие координаты точки, фигурирующие в выражении (1.2): 

  x = x(t), y = y(t), z = z(t). (2.3) 

Уравнения (2.3) называются уравнениями движения или законом движения точки в координатной форме. Эти же уравнения можно трактовать как параметрические уравнения траектории, в которых роль параметра играет время t. Чтобы получить уравнение траектории в координатной форме, нужно из уравнений (3) исключить время t.

Дифф-ные ур-ния вращения твердого тела вокруг неподвижной оси: ,

Jz – момент инерции тела относительно оси вращения z, – момент внешних сил относительно оси вращения (вращающий момент). , e – угловое ускорение, чем больше момент инерции при данном , тем меньше ускорение, т.е момент инерции при вращательном движении является аналогом массы при поступательном. Зная , можно найти закон вращения тела j=f(t), и, наоборот, зная j=f(t), можно найти момент. Частные случаи: 1) если = 0, то w = const – тело вращается равномерно; 2) = const, то e = const – вращение равнопеременное. Уравнение аналогичное дифф-ному уравнению прямолинейного движения точки .


[an error occurred while processing this directive]