Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи при соединении приемника в звезду Примеры выполнения курсовой работы Расчет методом узловых потенциалов

Методы расчета электрических цепей. Примеры выполнения курсового задания

Метод упрощения схем

 Для того чтобы показать, как рассчитывать цепь методом упрощения схем, предположим, что в источнике с э.д.с. E1 произошло короткое замыкание между зажимами, то есть E1 = 0. Электрическая схема цепи и комплексная схема замещения представлены на рисунках 3.6 и 3.7.

 Определяем эквивалентные сопротивления участков и всей цепи. Со­противления Z1 и Z3 соединены параллельно, поэтому их эквивалентное сопротивление Расчет магнитной цепи с постоянным магнитом Постоянные магниты находят применение в автоматике, измерительной технике и других отраслях для получения постоянных магнитных полей. В основе их принципа действия лежит физическое явление остаточного намагничивания. Известно, что любой ферромагнитный материал, будучи намагниченным от внешнего источника, способен сохранять некоторые остатки магнитного поля после снятия внешней намагничивающей силы.

Z1 3 =  =   = 2,83 – j3,22 Ом Пульсирующее магнитное поле Вращающееся магнитное поле нашло исключительно широкое практическое применение.


Рис. 3.6 Рис. 3.7

Сопротивления Z1 3 и Z2 соединены последовательно, поэтому эквива­лентное сопротивление всей цепи

ZЭ = Z1 3 + Z2 = 2,83 – j3,22 + 14 – j12 = 16,8 – j15,2 Ом.

Определяем ток в активной ветви:

I2 =  =  = 2,13 + j1,92 = 2,87 * A.

  Напряжение между узлами А и В:

UA B = I2 * Z1 3 = (2,13 + j1,92) * (2,83 – j3,22) = 12,2 – j1,41 B.

 Токи в пассивных ветвях цепи:

I1 =   =  = 2,2 + j2,6 = 3,41 *  A.

 I3 =  =  = –0,0783 – j0,678 = 0,682 * A.

 Уравнение баланса мощностей и векторная диаграмма выполняются аналогично примеру 3.3.1.

В дальнейшем, когда появилось понятие зарядов q , как активных участников электромагнитного взаимодействия, то электрический ток стали представлять в виде направленного движения зарядов, которое приводит к изменению потенциальной картины электромагнитного поля. И было принято, что положительные заряды перетекают от высокого потенциала к низкому, а отрицательные в обратную сторону. Но это хорошо понятно в случае более или менее свободного перемещения частиц-носителей заряда, например в вакууме, ионизированных газах или жидкостях. В твёрдых телах, где атомы могут быть жёстко связаны другими типами взаимодействия, смещение зарядов скорее всего передаётся по цепочке. Это видно из аналогии с продольным механическим ударом по ряду плотно прижатых шариков, где передаётся возмущение, а шарики остаются на месте, кроме крайних.
Поэтому скорее всего электрический ток можно представить, как некую меру динамического изменения потенциальной картины электромагнитных сил при смещении (но не движении) частиц с электрическим зарядом.
Как видно, электрический ток - это некий параметр, такой же как скорость. И если скорость можно измерить путём измерения расстояния и времени, необходимого для преодоления этого расстояния, так и электрический ток можно измерить только по косвенным параметрам, например по величине возникающей магнитной силы или по количеству тепла, выделяющегося при механическом смещении заряженных частиц.
Почему эти 2 параметра - напряжение U и ток I, сохранились в практике с давних времён, несмотря на все успехи физиков, нашедших с тех пор электрон и создавших теорию поля?
Ответ простой:
произведение этих параметров определяет электрическую мощность S=UI,
а отношение - свойства материалов среды с электромагнитным полем.
Единицей измерения активной мощности Р в системе СИ установлен Ватт (Вт), который в точности соответствует единице измерения мощности в механических и тепловых системах - ватту (вт). Разница только в размере первой буквы обозначения.
Единицей измерения реактивной мощности Q в системе СИ установлен Вольт-Ампер- реактивный (ВАр).

Электрические цепи постоянного тока Расчет цепей методами уравнений Кирхгофа и контурных токов. Метод непосредственного применения уравнений Кирхгофа. Сущность метода контурных токов для расчета цепей. Расчет цепей методами узловых потенциалов и двух узлов. Сущность метода узловых напряжений. Особенности метода двух узлов. Примеры расчета цепей указанными методами. Основные теоремы теории цепей.
Расчет методом узловых потенциалов