Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи при соединении приемника в звезду Примеры выполнения курсовой работы Расчет методом узловых потенциалов http://azartron.com/index_p_news.html

Методы расчета электрических цепей. Примеры выполнения курсового задания

Синусоидальный ток. Формы его представления

 В практике электротехники в качестве переменного тока широкое применение нашел ток синусоидальной формы. Это обусловлено рядом преимуществ:

-генераторы синусоидального тока значительно дешевле в производстве, чем генераторы постоянного тока;

-переменный ток легко преобразуется в постоянный;

-трансформация и передача электрической энергии переменным током экономичнее чем постоянным;

-двигатели переменного тока имеют простую конструкцию, высокую надежность и невысокую стоимость.

  В настоящее время переменный ток применяется в промышленном приводе и в электроосвещении, в сельском хозяйстве и на транспорте, в технике связи и в быту. Производство электрической энергии также осуществляется на переменном токе. Огромную роль в деле внедрения переменного тока сыграли русские ученые П.Н.Яблочков и М.О.Доливо-Добровольский.

1.Основные параметры синусоидального тока

 Переменным называют ток (напряжение, ЭДС), изменяющийся во времени по величине и направлению. Синусоидальный ток может быть представлен посредством действительной функции времени - синусной и косинусной, например

 (2.1)

где Im - максимальная амплитуда тока (амплитудное значение);

 w - угловая частота, причем

 f - частота колебаний [Гц];

 Т - период [C];

 ji - начальная фаза, определяет значение тока в момент времени t=0, т.е. i(t=0) = Im× sin ji.

  На рис. 2.1 приведен график двух колебаний с разными начальными фазами j1 и j2, причем j1 > j2. Амплитудное значение гармоник имеет место, когда wt + j = 2 pn (n = 0.1.2...), т.е. в моменты

 

Так как j1> j2, то t1 имеет место раньше t2.

 

Рис.2.1

  Начальная фаза часто задается в градусах. Поэтому при определении мгновенного значения тока аргумент синуса ( слагаемые wt и j)  нужно привести к одной единице измерения (рад. или градус).

Иногда гармоническое колебание представляется в косинусной форме. Легко видеть, что для перехода к такой форме в (2.1) достаточно изменить лишь начальную фазу, т.е.

Промышленная частота переменного тока в России и всех странах Европы равна 50 Гц, в США и Японии - 60 Гц, в авиации - 400 Гц. Снижение частоты ниже 50 Гц ухудшает качество освещения. Увеличение частоты ухудшает условия передачи электроэнергии на большие расстояния.

  Выражение для синусоидального напряжения аналогично (2.1), т.е.

 u(t) = Um × sin (wt + ju) (2.2) 

Аналогично (2.1) определяются и основные параметры напряжения.

 Кроме уже названных параметров, в практике электротехники часто пользуются понятиями среднего и действующего значений тока и напряжения. Рассмотрим их.

 Под средним значением синусоидального тока понимают его среднее значение для полпериода:

  (2.3)

 Видим, что среднее значение синусоидального тока составляет 2/p » 0,64 от амплитудного. Аналогично определяется среднее значение синусоидального напряжения

  Действующим называют среднее квадратичное значение синусоидального тока (напряжения) за период

.

 Так как

,

  то .

 Видим, что действующее значение синусоидального тока составляет от амплитудного. Аналогично определяется действующее значение синусоидального напряжения

.

Если говорят о значениях переменного тока или напряжения то, как, правило, подразумевают их действующее значения. Например, напряжение в однофазной сети переменного тока 220 В - действующее. При этом амплитудное значение Um @ 310 В.

Схемы замещения трансформаторов. Типы трансформаторов и их применение в радиотехнике. Резонансы в индуктивно-связанных контурах. Расчет резонансных токов в индуктивно-связанных контурах. Характеристики связи контуров. Виды резонансов в связанных контурах Частотные характеристики реактивных элементов цепи. Основы анализа четырехполюсников. Классификация четырехполюсников. Уравнения передачи четырехполюсников
Расчет методом узловых потенциалов