Графика
Курсовые
Алгебра
Физика
Типовой
Инженерная
Математика
Лекции

Бетатрон

ТОЭ
Задачи
Решения

Реактор

Архитектура
Контрольная
Чертежи

Методы расчета электрических цепей. Примеры выполнения курсового задания

 Проведем сложение векторов. Для этого начало вектора  переместим в точку конца вектора , а начало вектора  - в точку конца вектора . Результатом сложения является вектор  выходящий из начала вектора  в конец вектора . Угол j определяет сдвиг фаз между током и результирующим напряжением, т.е.

 Соединим точки концов двух векторов -  и . Обозначим вновь полученный вектор  . Образовавшийся треугольник из векторов называют треугольником напряжений. Для него справедливы следующие выражения:

   (4.10)

   (4.11) Параллельное соединение нелинейных элементов

   (4.12)

  (4.13)

 Возвратимся вновь к анализу мгновенной мощности, выделяемой на элементе R - pR(t). С учетом (4.10) перепишем (4.8) в виде

  (4.14)

Первое слагаемое в правой части полностью соответствует (4.9) т.е. определяет активную мощность

  [Вт] (4.15)

Выражение (4.15) используется в практике намного чаще так как определяет зависимость активной мощности от сдвига фаз между действующими значениями тока и напряжения цепи. В силу этого коэффициент cos j называют коэффициентом мощности и обозначают l

  (4.16)

 Обратимся к исходному выражению для мгновенной мощности цепи - (4.7). В нем третье и четвертое слагаемое определяют мощность, выделяемую на реактивных элементах - индуктивности

  (4.17)

и емкости

  (4.18)

 Каждое из этих слагаемых изменяются с удвоенной (относительно тока) частотой, но имеют противоположные фазы (рис.4.3). Так как постоянная составляющая в (4.17) и (4.18) отсутствуют, то среднее значение каждого из них равна нулю. Однако сумма pL(t) и pC(t) отлична от нуля и определяет мгновенную мощность реактивных элементов (участков) цепи. Определим ее:

   (4.19)

Применим к (4.19), (4.11), тогда

   (4.20)

Коэффициент

  [вар] (4.21) 

называется реактивной мощностью, обозначается Q и измеряется в воль-амперах реактивных [вар].

 Теперь общее выражение для мгновенной мощности всей цепи (рис.3.1) можно записать в виде

   (4.22)

Второе и третье слагаемые в (4.22) свернем как косинус суммы аргументов - . Тогда

  (4.23)

Таким образом, мгновенная мощность цепи постоянную и переменную составляющие. Переменная составляющая изменяется относительно постоянной с удвоенной частотой (рис.4.4). Амплитудное значение переменной составляющей обозначают S и называют полной мощностью цепи

 [ВА] (4.24)

 Полная мощность в  раз превышает постоянную составляющую (активную мощность). Поэтому график мгновенной мощности заходит в область отрицательных значений. Величина области отрицательных значений

определяется коэффициентом мощности. Физически эта область определяет моменты времени в которые цепьвозвращает энергию источника.

 Если умножить все стороны треугольника сопротивлений (рис.3.2) на , то получим треугольник мощностей (рис.4.5). В этом треугольнике гипотенуза - полная мощность S, прилежащей к острому углу катет - активная мощность Р, а противолежащий - реактивная мощность Q. Угол  определяется сдвигом фаз между током и напряжением цепи и задает значение коэффициента мощности. Для треугольника очевидны выражения

   (4.25)

   (4.26)

 Полная мощность S это теоретически достижимая, расчетная мощность, По значению S производятся расчеты сечения проводов, изоляция, параметры приемников электрической энергии. Из-за сдвига фаз  мощность полностью не реализуется. Поэтому  и получил название коэффициента мощности. Всегда стремятся обеспечить его высоким.

Теоремы об источниках тока и напряжения и их применение для расчета цепей. Принцип суперпозиции и его применение для расчета цепей. Расчет цепей методами наложения и эквивалентного генератора. Примеры и особенности расчета цепей данными методами. Расчет цепей методом преобразования треугольника сопротивлений в звезду сопротивлений и наоборот. Потенциальная диаграмма. Способы решения систем алгебраических уравнений.

Математика