Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи при соединении приемника в звезду Примеры выполнения курсовой работы Расчет методом узловых потенциалов

Методы расчета электрических цепей. Примеры выполнения курсового задания

Опыт короткого замыкания трансформатора

 Опытом короткого замыкания называется испытание трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном токе первичной обмотки. Схема для проведения опыта короткого замыкания приведена на рис. 11.3. Опыт проводится для определения номинального значения тока вторичной обмотки, мощности потерь в проводах и падения напряжения на внутреннем сопротивлении трансформатора.


При коротком замыкании цепи вторичной обмотки, ток в ней ограничивается только малым внутренним сопротивлением этой обмотки. Поэтому, даже при относительно небольших значениях ЭДС Е2, ток I2 может достигнуть опасных величин, вызвать перегрев обмоток, разрушение изоляции и выход трансформатора из строя. Учитывая это опыт начинают при нулевом напряжении на входе трансформатора, т.е. при . Затем постепенно увеличивают напряжение первичной обмотки до значения , при котором ток первичной обмотки достигает номинального значения. При этом ток вторичной обмотки, измеренный по амперметру А2 , принимают равным номинальному. Напряжение  называют напряжением короткого замыкания. Взаимодействие токов. Магнитная индукция Электрические токи взаимодействуют между собой. Как показывает опыт, два прямолинейных параллельных проводника, по которым текут токи, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если токи противоположны по направлению

 Величина напряжения первичной обмотки в опыте короткого замыкания   мала и составляет 5 ¸ 10% от номинального. Поэтому и действующее значение ЭДС вторичной обмотки Е2 составляет 2 ¸ 5%. Пропорционально значению ЭДС уменьшается магнитный поток, а значит и мощность потерь в магнитопроводе - Рс . Отсюда следует, что показания ваттметра в опыте короткого замыкания, практически определяют только потери в проводах Рпр, причем

   (11.3)

 Выразим ток I2К через приведенный ток 

  Учтем, что , а также что

.

  Тогда выражение (11.3) перепишем в виде

  (11.4)

где RК - активное сопротивление трансформатора в режиме короткого замыкания, причем

  (11.5)

 Значение активного сопротивления трансформатора позволяет рассчитать его индуктивное сопротивление

  При точном расчете нужно учитывать, что RК зависит от температуры. Поэтому полное сопротивление трансформатора определяют приведенным к температуре 750С, т.е.


.

 Теперь легко определить падение напряжения на внутреннем сопротивлении трансформатора - ZК:

На практике пользуются приведенным значением UК, в процентах, обозначая его звездочкой, т.е.

  (11.6)

Это значение приводят на паспортном щитке трансформатора.

 Знание внутреннего сопротивления трансформатора позволяет представить его схему замещения в виде рис.11.4. Векторная диаграмма, соответствующая этой схеме приведена на рис. 11.5.

 Векторная диаграмма позволяет определить уменьшение напряжения на выходе трансформатора D U за счет падения напряжения на комплексном сопротивлении. Величина D U определяется как расстояние между прямым, выходящим из точек начала и конца вектора  и параллельными оси абцисс. Из диаграммы видно, что эта величина складывается из катетов двух прямоугольных треугольников, гипотенузы которых  и , а острые углы равны j2.

 Поэтому

  На практике пользуются относительной величиной DU, в процентах, обозначенной звездочкой, т.е.

   (11.7)

 Для мощных трансформаторов ( SH> 1000 В×А) опыт короткого замыкания может служить для контроля коэффициента трансформации. Для таких трансформаторов в режиме короткого замыкания током холостого хода можно пренебречь, считая

Поэтому

   (11.8)

 Последнее выражение тем точнее, чем больше мощность трансформатора. Однако оно не приемлимо для маломощных трансформаторов.

Гармонические колебания и их характеристики. Временная и векторная диаграммы цепи. Синусоидальный ток в цепях с резистором, индуктивностью и емкостью. Токи, напряжения и мощности в неразветвленных цепях переменного тока. Векторные диаграммы токов и напряжений, треугольники сопротивлений. Токи, напряжения и мощности в разветвленных цепях переменного тока. Векторные диаграммы токов и напряжений, треугольники сопротивлений. Особенности расчета разветвленных цепей. Математические операции с комплексными числами.
Расчет методом узловых потенциалов