Метод активных и реактивных составляющих токов Метод узловых и контурных уравнений Расчёт трёхфазной цепи при соединении приемника в звезду Примеры выполнения курсовой работы Расчет методом узловых потенциалов

Методы расчета электрических цепей. Примеры выполнения курсового задания

Метод проводимостей

Метод проводимостей основан на применении схемызамещения с параллельным соединением элементов (рисунок 2.3).

 Расчёт начинают с определения активных, реакти­вных и полных проводимостей ветвей и всей цепи:

  G1 = R1 / Z12 = 2 / 3,612 = 0,153 См;

 BC1 = XC1 / Z12 = 3 / 3,612 = 0,23 См; Математическое моделирование электромеханических процессов специальных электроприводов Электротехнические расчеты


Рис. 2.3

G2 = R2 / Z22 = 14 / 18,42 = 0,0414 См;

Y1 = 1 / Zl = 1 / 3,61 = 0,277 См;

ВC2 = ХC2 / Z22 = 12 / 18,42 = 0,0354 См;

Y2 = 1 / Z2 = 1 / 18,4 = 0,0543 См;

BL3 = 1 / XL3 = 1 / 18 = 0,0556 См;

G = G1 + G2 = 0,153 + 0,0414 = 0,1944 См;

B = –BC1 – BC2 + BL3 = -0,23 – 0,0354 + 0,0556 = –0,2098 См;

 Y =   =  = 0,286 См.

Далее определяем активные, индуктивную и емкостные составляющие то­ков в ветвях заданной цепи:

IG1 = U * G1 = 65 * 0,153 = 9,945 A;

IC1 = U * BC1 = 65 * 0,23 = 14,95 A;

IG2 = U * G2 = 65 * 0,0414 = 2,69 A;

IC2 = U * BC2 = 65 * 0,0354 = 2,3 A;

I1 = U * Y1 = 65 * 0,277 = 18 A;

I2 = U * Y2 = 65 * 0,0543 = 3,53 A;

I3 = IL3 = U * BL3 = 65 * 0,0556 = 3,61 A

Отличие метода проводимостей в том, что мы можем конкретно опре­делить все индуктивные и емкостные составляющие токов в ветвях, а в методе активных и реактивных составляющих мы можем определить только общие реактивные токи с их положительными или отрицательными знаками, указывающими на индуктивный или ёмкостный характер ветви. Если предпо­ложить, например, что ветвь 2 задана параметрами R, L и C, а не R и С, как задано, то это различие проследить можно более наглядно. Тогда со­отношение между реактивными токами, полученными двумя методами вырази­лось бы в таком виде: IP2 = IL2 – IC2. В нашем случае эти соотношения имеют вид: Ia2 = IG1; Iа2 = IG2; IP1 = –IC1; IP2 = –IC2; IP3 = IL3.

Ток в неразветвлённой части цепи можно проверить и по его актив­ной и реактивной составляющим:

Ia = IG1 + IG2; 

 IP = IL3 – IC1 – IC2; 

 I =

Угол сдвига фаз и мощности определяются аналогично.

Рисунок 3.

Произвольно выбранное направление токов в ветвях схемы показано на рис. 3. Так как схема содержит всего два узла, то для расчета токов в ней применяют частных случай метода узловых потенциалов – метод двух узлов. Согласно этому методу напряжение между узлами 1 и 2 определяется:

;

где комплексные проводимости параллельных ветвей:

;

;

.

Подставим значения комплексных ЭДС и проводимостей в формулу для определения напряжения:

Рассчитаем токи в ветвях цепи, пользуясь законом Ома для ветви с ЭДС.

Для построения векторной диаграммы рассчитаем напряжения на всех элементах цепи:

 

Основные законы и свойства электрических цепей Основные сведения об электрических цепях. Идеальные элементы электрических цепей. Реальные элементы электрических цепей. Законы Ома и Кирхгофа. Баланс мощностей в цепи. Простейшие примеры применения законов Ома и Кирхгофа для расчета цепей. Топология цепей. Узел, ветвь, контур. Свойства последовательного, параллельного и смешанного включения элементов. Мощность и работа постоянного тока.
Расчет методом узловых потенциалов